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Abstract — In this paper, an improved particle swarm 
optimization (PSO) algorithm for robust optimization 
problems is proposed. The new algorithm deeps basic concepts 
of the PSO, results in dynamic determination of the robust 
optimal solution by using the proposed four-quadrant-longest-
distance expected fitness evaluation method in the 2D space, 
and shows a faster convergence speed and a higher solution 
accuracy. The efficiency and advantages of the proposed 
method is verified by numerical experiments. 

I. INTRODUCTION 

In 1995, an stochastic optimization strategy named 
particle swarm optimization (PSO) was originally proposed 
by Dr. Eberhart and Dr. Kennedy inspired by the social 
behavior associated with swarm of bees [1]. The underlying 
mechanism of PSO is that, particles move through the 
problem space influenced by the optimum experience of 
individual (pbest) and swarm (gbest) simultaneously [2]. 
PSO has been proved to be a successful tool used to solve 
many difficult optimization problems [3], [4]. Traditionally, 
the ultimate attempt of PSO or other optimization study is 
to find one global one or several local optimal solution(s) 
[3]-[5]. However, in the view of robust optimization design 
technique which is a new technique about ten years old, the 
"optimal" solution should not deserve to be a preferred 
design solution if the "optimal" one cannot tolerate the 
small perturbations or the slight variations of design 
variables and optimized parameters [6]-[8]. This paper 
proposed a PSO based methodology in order to search the 
robust optimization in the solution space. In the proposed 
PSO, a four-quadrant-longest-distance method was 
developed to effectively evaluate the expected fitness value 
so as to determine the robust performance of the optimal 
solutions. The feasibility of the proposed PSO was 
demonstrated by the application to the mathematical  robust 
optimization problem.  

II. PROPOSED ALGORITHM 

After define the search space and the swarm population 
size, generate the particles' locations and velocities 
randomly, the process of the proposed PSO is as follows: 

A. Refresh Candidate Pool and Update Position (Step 1) 

The position of a particle is determined according to the 
current location and velocity, then the object function is 
calculated for each updated particle, the particle with best 
objective function value is defined as leading candidate 
(Plc). Fill the candidate pool with the whole particles, here, 
the candidate means the particles that will be used in the 

expected fitness evaluation. 

B. Evaluate Expected Fitness (Step 2) 

The fitness is used to measure the robust performance of 
a optimal solution. As mentioned in [6] and [7], the 
conventional fitness evaluation is too much computational 
burden to be viable for many engineering application. To 
overcome this issue, a four-quadrant-longest-distance 
method is introduced, i.e., the 2D space is divided into 
four-quadrant by using the leading candidate as the origin 
point. Next, in each quadrant, the particles are arranged in 
ascending order according to how far they are from the 
leading candidate. Simplified explanation on the candidate 
selection process is illustrated in Fig. 1. Based on the 
selection criterion that "the long distance the particle from 
Plc the low objective function value the particle has," we 
can find in Fig. 1, P3 is the criterion abiding particle with 
longest-distance, so we select P3 as the common candidate. 
Therefore, there are at most four common candidates in 
four-quadrant that will be used in the expected fitness 
evaluation defined in (1). 

 
Fig. 1. A schematic illustration of candidate selection 
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where N is the number of common candidates, x and y 
indicate the position of leading candidate, xi and yi describe 
the position of the ith common candidate, )(normf  is the 

normalized objective function of the optimal problem. α 
and β are weight parameters, large α corresponds to heavy 
reliance on the global (or local) optimal solution, while a 
large β gives heavy reliance on the robust solution. 
Therefore, we developed a fitness evaluation function that 
balances the contribution of both optimal and robust 
according to the application of the robust optimization. 

C. Update Candidate Pool (Step 3) 

Remove the criterion abiding particle and leading 
candidate, i.e., the P1, P2, P3 and Plc in Fig. 1, from the 
candidate pool. Steps (2-3) is repeated until the number of 
the candidate in candidate pool is less than 2. 
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D. Update pbests and gbests  and Velocity (Step 4) 

If the current fitness is better than the old individual best 
value, the pbest is replaced by the current position. The 
gbest is replaced by the best gbest among the swarm. The 
velocity of jth particle is updated based on (2) which is 
described clearly in [3] and [4]. Steps (1-4) are repeated 
until all particles are gathered around the gbest, or a 
maximum iteration is encountered. 
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III. NUMERICAL TEST AND RESULT 

A 2D test mathematical function is used to verify the 
performance of the proposed algorithm formulated as, 
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where M is the total number of peaks. ak and bk are, 
respectively, the width and amplitude of the kth peak. xpk 
and ypk are the position of the kth peak. x and y are the 
decision variables. The test function is generated according 
to [6] and the mathematical expression is formulated as 
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the search space is 5,0  yx . Fig. 2 shows the shape of 

the test function, where total number of local optimal 
solution is 5 at positions (1,1), (1,3), (3,1), (3,4) and (5,2). 
The global optimal solution lies in position (3,4), the robust 
optimal solution is located at position (3,1). 

 
Fig. 2. Test mathematical function 
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Fig. 3. Optimization result (α=1,β=1) 

The basic conditions to execute the proposed PSO are 
defined as: number of iterations and particles are 20 and 36, 

ω is 0.6, Cp and Cg are 1.5. The optimization processes 
shown in Fig. 3 indicate that the proposed PSO can find 
robust optimal solution with a fast convergence rate. To 
observe effect of the proposed expected fitness evaluation 
method, we apply the proposed PSO by setting β value as 0 
to the same test function and execution conditions. The 
results of the simulation is depicted in Fig. 4. The solutions 
converged to global optimal due to the absence of proposed 
robust performance evaluation of the optimal solutions. 
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Fig. 4. Optimization result (α=1,β=0) 

IV. CONCLUSION 

This paper proposed a PSO algorithm with novel four-
quadrant-longest-distance expected fitness evaluation for 
robust optimization problems. Through the application to 
numerical function, it was revealed that the proposed PSO 
algorithm is promising for robust optimization problems. 
The electromagnetic engineering application of the 
proposed algorithm will be demonstrated in the full paper. 
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